Academy of Sciences of the Czech Republic

Luminescence and Energy Transfer in Ce³⁺ doped Multicomponent Garnets

Karol Bartosiewicz

Transport of the excitation energy through scintillator material: $Lu_3Al_5O_{12}:Ce^{3+}$

Introduction and Aims

Introduction and Aims

Conclusions

4

Excitation and emission characteristics

waveInegth(nm)

Excitation and emission spectra (measured at the maxima of emission and excitation peaks at λ_{em} =313 nm and λ_{ex} =275 nm, respectively) of Gd₂Y₁Ga₁Al₄O₁₂ single crystal, 8 K.

Results and Discussion

Temperature dependence of the decay time of Gd^{3+} emission at 313 nm in the $Gd_1Y_2Ga_1AI_4O_{12}$ and $Gd_2Y_1Ga_1AI_4O_{12}$ single crystals under excitation at 275 nm

Excitation and emission characteristics

waveInegth(nm)

Excitation and emission spectra (measured at the maxima of emission and excitation peaks at λ_{em} =520 nm and λ_{ex} =275 nm, respectively) of the undoped and Ce-doped Gd₃Ga₃A₁₂O₁₂ single crystal, 8 K.

Temperature dependence of the decay times related to ${}^{6}P_{J} \rightarrow {}^{8}S_{7/2}$ emission transition in Gd³⁺ ions in un-doped and Ce³⁺-doped Gd₃Ga₃Al₂O₁₂ single crystals

nm) in Gd₃Ga₃Al₂O₁₂:Ce³⁺ and Gd₃Ga₃Al₂O₁₂ single crystals.

Results and Discussion

Temperature dependence of decay time for the ${}^6P_J \rightarrow {}^8S_{7/2}$ in Ce³⁺-doped Gd₃Ga₃Al₂O₁₂ single crystal

Excitation and Emission Characteristics

The excitation spectrum of the Ce³⁺ luminescence related to garnet phase and emission spectrum under excitation into Ce³⁺ absorption band in perovskite phase in Gd₂Y₁Al₅O₁₂:Ce³⁺ 1

Results and Discussion

The 5d₁-4f decay curve of the Ce³⁺ luminescence in garnet phase measured at λ_{em} =560 nm and under excitation at λ_{ex} =310 nm corresponding to perovskite phase in Gd₂Y₁Al₅O₁₂:Ce³⁺ 1

Results and Discussion

Scintillation decays

Scintillation decay times of the Ce³⁺ emission in $Gd_xY_{3-x}AI_5O_{12}$ (x=0.75, 1.25 and 2) excited by 662 keV photons of ¹³⁷Cs radioisotope at room temperature

Excitation and emission characteristic

Low temperature (8 K) excitation and emission spectra of the Ce-doped Tb_{0.35}Lu_{2.65}Al₅O₁₂ single crystalline film for emission at 520 nm and excitation at 262 nm, respectively

Tb³⁺ \rightarrow Ce³⁺ energy transfer through ⁵D₃ energy level of Tb³⁺

Temperature and Tb dependence of the photoluminescence decay time for the emission from ${}^{5}D_{3}$ (λ_{em} =383 nm) energy level of the Tb³⁺ in Tb_xLu_{3-x}Al₅O₁₂:Ce³⁺ (SCF) under 262 nm excitation into 4f \rightarrow 5d absorption band of Tb³⁺

Tb³⁺ \rightarrow Ce³⁺ energy transfer through ⁵D₄ energy level of Tb³⁺

Temperature dependence of the photoluminescence mean decay time of the Tb³⁺ emission (${}^{5}D_{3} \rightarrow {}^{7}F_{0}, \lambda_{em}$ =383 nm and ${}^{5}D_{4} \rightarrow {}^{7}F_{0}, \lambda_{em}$ =490 nm) and Ce³⁺ emission (5d₁ \rightarrow 4f , λ_{em} =520 nm) under excitation into 4f⁸ \rightarrow 4f⁷5d¹ Tb³⁺ absorption band at 262 nm in Tb_{0.35}Lu_{2.65}Al₅O₁₂:Ce³⁺

$Ce^{3+} \rightarrow Tb^{3+}$ energy transfer

Prompt 5d₁-4f decay curve of the Ce³⁺ luminescence measured at λ_{em} =520 nm and λ_{ex} =452 nm in the Tb_{0.35}Lu_{2.65}Al₅O₁₂:Ce³⁺

3a
$$Gd_xY_{3-x}Ga_xAl_{5-x}O_{12}$$
 and $Gd_xY_{3-x}Ga_xAl_{5-x}O_{12}$:Ce³⁺

Gd_xY_{3-x}Al₅O₁₂:Ce³⁺

✓ Energy migration among co-activator in garnet lattice is efficient at concentration around ~50 %

✓ Gd³⁺ and Tb³⁺ ions show efficient energy transfer to Ce³⁺ in garnet lattice

✓ Energy transfer from Ce^{3+} ions in perovskite phase to Ce^{3+} in garnet was revealed

✓ ${}^{5}D_{3}$ and ${}^{5}D_{4}$ energy levels of Tb³⁺ are involved in Tb³⁺→Ce³⁺ energy transfer

✓ In diluted and heavily Tb doped $Lu_3Al_5O_{12}$:Ce³⁺ single crystalline films bidirectional Ce³⁺→Tb³⁺ energy transfer was revealed

For financial support from

Marie Curie Initial Training Network LUMINET, grant agreement no. 316906

